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Contradictious results published by different authors about the dynamics of systems with random
parameters have been examined. Statistical analysis of the simple 1st order system proves that the
random parameter can cause a systematic difference in the dynamic behaviour that cannot be
(in general) described by the usual constant-parameter model with the additive noise at the output.

The majority of existing methods for a modelling of chemical objects and proces-
ses' 7 is mostly based on the following scheme: a) statement of a general mathema-
tical model; b) experimental identification of its coefficients; c) verification of the mo-
del on the reality.

As a first step, the physico-chemical analysis is commonly used for the determi-
nation of the general mathematical description of the system (deterministic model).
The aim of the second and the third step is an evaluation (identification) of unknown
parameters and verification of the whole model in real or simulated conditions. Quali-
ty of the model can be judged either using some explicitely defined criterion or at least
subjectively (visual coincidence of the response etc.).

The just outlined scheme, more or less common for all natural sciences, has some
specific features in chemical applications. At first, the exact analytical formulation
of the mathematical model is often considerably complicated and laborous (distri-
buted parameters, nonlinearities etc.) and the simplification of it is not always straight-
forward. Even the experimental verification of the finded model is not without
problems either. High level of noise, different quality, accuracy and reliability of
experimental equipment effect directly the achievable precision of results.

Extremely high level of random disturbances calls for statistical processing either
in data processing or in the statement of the stochastic mathematical model that could
be more suitable for the description of the real system than the deterministic one.

Modern theory of automatic control often deals with the term stochastic system
which can be described mostly as a block scheme in Fig. 1. Object S is described as
a model with constant or slowly changing coefficients. The input x(t) may by either
random or deterministic one. On the output we can observe only a mixture of an
ideal output and an additive random disturbance. It does not matter whether the
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object is relatively simple or complex one (several inputs and outputs, feedbacks etc.);
the main idea of this approach consists in the constant-coefficient model and in the
concentration of all disturbances in one point of the signal way. For linear systems
it is not important whether this point lies at the output, input or at some other place
of the signal way, because the influence can be simply transtormed anywhere else.

The described approach has been largely analysed and frequently used in many
applications. Despite of its simplicity it describes quite satisfactorily numerous
technical and scientific problems. One of its main advantage consists in the possibility
of diminishing the disturbing influence of the random component by averaging
(e.g. repetitive measurements, correlation technique etc.).

Although this fact facilitates and even enables the solution of many problems,
it cannot be used in every case. As an example it may be mentioned a two-phase
continuous stirred tank reactor with randomly fluctuating instantaneous level (volu-
me) of an inner liquid. If the random component is significant with respect to the
mean value of the volume, the mathematical description yields to the model with
variable coefficients (time constants) for which the model mentioned above (Fig. 1.)
is substantionally non-adequate.

Systems with randomly varying parameters and their dynamic properties have
been examined by several authors either in the theoretical or experimental field.
Interesting results have been published by King!+?, who theoretically showed, that
even a |*' order system with variable time constant can occur substantionally different
dynamic properties than a corresponding constant-parameter system. In the men-
tioned example the random parameter causes an increasing of an effective (mean)
time constant of the system. On the other hand some other authors like Berrymann
and Himmelblau® in a simulated experimental analysis proved that no significant
differences occurred between the dynamics of the constant and random parameter
systems (in the mean sense).

With respect to this discrepancy and having in mind that the King’s conclusions
particularly could call for the principal revision of the widely used identification
methods, experimental verification of theoretical results etc., there is analysed a simple
example for judging the significance of mentioned contradictious results.

n(t)

Fic. 1

Stochastic Model of the System with Con-
stant Parameters

xt) S 2) ()
)
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THEORETICAL

STATEMENT OF THE PROBLEM

Let us have the simplest dynamic 1st order system described by an ordinary diffe-
rential equation with time-variable coefficients:

y +ay=bx. )]

Dynamic member of this type — either with constant or variable coefficients —
represents a basic element for the description of the dynamics of almost any chemical
equipment. Accordingly, the deviation detected in this case will necessarily influence
the dynamics of all other more complicated equipments.

Equation (1) with time-constant coefficients has the solution (weighting function —
response to an input Dirac impulse) in the form (Fig. 2):

W) = bexp(—at). 2

Consider now that the coefficients in (/) randomly vary in time. Such equation
describes e.g. the dynamics of a continuous reactor with fluctuating volume flow rate
of the reacting mixture. Let us take following assumptions:

a) The system response is a continuous function of time for any ¢ & 0.

b) The changes of parameters can occur only at discrete time instants  (3)
(ti:i=0,1,2...; 1, = 0).

c) During the interval ¢; £t < ¢;,, the parameters remain unchanged.

The first assumption is for real (inertial) systems fulfilled automatically. The others

can be approximated with a sufficient accuracy by a suitable choice of instants ¢;.
The first-order stochastic system described by Eq. (/) will be analysed for the case

b
)

Fi1G. 2

Impulse Response of the System (I} with
Constant Coefficients (yg = 1)
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that the parameter a (inverse value of the time “constant” of the system) is randomly
changed. In order to fulfill mentioned assumptions the values b must then be changed
too — depending on a. Independent changes of both parameters (e.g. one of them
kept constam) as it is sometimes assumed, entail a discontinuous system response

contradicting the physically motivated assumption (3a).

The impulse response of such stochastic system is given as a sum of elementary
responses y;(f) that form a solution of Eq.(/) within one time interval, where the vector

of parameters does not change:

wi() = y(1) for St <1y, }
yi(f)=0  for other t

A= 0.

The elementary impulse response is then given (Fig. 3):

yit) = yiexp[—ai(t = ;)] for ;S 1<ty

yi(f) =0 for other ¢,

where
Vi = yi(ti) .

Due to assumption of continuity:

lim yi(0) = yici(ties) = Yiss -

(A2

Without loss of generality we may put t, = 0:

)’0(11) = Y1 = Vo €Xp ["altl]
}’1(‘2) =y, =y €Xp ["az(’z - ’1)]
yats) = y3 = yaexp [—as(t; — 1,)]

Vioalt)) = yi = yiorexp[~ai(t — 421)] -

After sequential substitution we obtain:
i B
Vi = Yo €Xp {—jZ aft; = )}
=1
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For a special case of equidistant time instants

t; — t;-, = At = const (11)

yoexp{—AtY a}. (12)

1=1

Yi

Final impulse response is then given by the substitution of Eq. (/2) or (10) in Eq. (5)
(Fig. 3).

STATISTICAL CHARACTERISTICS OF THE RESPONSE

As it has been assumed, the values a; depend on the external influences. They can be
described as random variables with some statistical properties, and the whole response
as a random process. Its value in every time instant is a random variable.
Let us assume that values a; are mutually independent random variables, stationary
in the wide sense with the mean 4, standart deviation g, and probability density p(a;).
The mean value of the response in the time instant ¢ is given:

E{y} = E{yoexp[-Ar T )]} =
I
+ + o + o0
=J J J yip(a,; ag; ... a))da, da, ... da; =
-0 J-w -
+ o + +o |
= yOJ I J ]Hl [exp (—a; Af) p(a;)] da, da, ... da, =
—® J o —w 1=

- J’m exp (—a; Ar) play) day (13)
1) g

N

"

yt)
"

o/

Fie.3

Impulse Response of the Non-Stationary
0 System
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Similarly the variance:

Dy} = E{[y: - E{yi}]z}_= E{yi} - E*{y} =

E{yoexp (=28t Y ap)} — E*{yi} =

=1

Il

=2 11[ J.m exp (—2a; At) p(ajyda; — E*{y;} . (14)

The further procedure depends on the type of probability distribution of the random
vector a;. As an example, two typical distribution Jaws will be analysed and compared
(other types of distributions can be used similarly):

Normal Distribution

The probability density of the parameter a; has the form

p(a;) = (1o, /(2m)) . exp [ ~(a; = @[207], 19)

where @ and o, are the mean and standard deviation of the parameter a;. Due to the
assumption of stationarity, both of them are constant in time.

The mean value of the response (/3) is then given:

i + o
E{y} = yo 1—11 exp (—ay At) p(a;) da; =
= ~w

i +w 2
=yl %ﬂjj‘_w exp[—a,- At — (a’zTa):l da; . (16)

=1 0, 2
The exponent in the integrand can be written as:

(a<—(7)2 1 2 P 2 =27 __
—aJAt—’zT: —E[aj —2(@a — o2 At)a; + @°] =

1 _ 2 anz - o2 At?
=——27§(a,~—a+aaAt) —aAt+T

(17)

E{y} = yojljl exp("ﬁit :85)03 At/Z)J‘_+°o exp[—(a; — @ + o2 At20%] da;.
' ) (18)
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Since

(1/s. \/(27t))J‘jmexp [-22/(202)] dz = 1 (19)

E{y} = yoﬁexp [—a At + (1/2)02 At]2] = yoexp [—(a — 1]20 A1) i At[2] .
=1 (20)
Similarly the variance (14):
o) =1 [ e (-2 ) e - ). (2

-®

The integrand in (21) is nearly the same as in (13) — except the constant in the expo-
nent. Substituting 2At instead of At and using Eq. (20) we obtain:

D{y;} = ygjli {exp [—2a At + 267 Ar*]} — yiexp [—2ai At + o2i A2] =
= yjexp [—2ai At + oli A?] . (exp [+oli AP] — 1) =
= E*{y;} (exp [+05i A*] — 1) (22
0, = E{y} [exp (i A2) — 1]12. (23)
Uniform Distribution

The probability density p(a;) in this case has the form:

pla;) = 1/(2b) for da—b<a;<a+b } (24)

pla) =0 for other a;

The parameter b denotes the width of the interval (6 + b) within which the values a;
can occur. Standard deviation of a; is equal:

0, = bJ\3. (25)

Substituting (24) into Eq. (13) and (/4) we obtain:

i +o
B = w01 [ o (- 80 p) dos =
1= ~ o

i
1
.Vol_[

atb
E'[ exp (—a; At) da; = y, exp (—ai At) . (sinh b At/b A1) (26)
j=1 a-b
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+o

Dl = 31T [ evp (=20, 40 ) o = E2() =

a+h
{ exp (—2a; At)da; — E*{y;} = yj exp (—2ai Ar).

. (sinh 2b Atf2b At)' — y§ exp —2ai At) . (sinh b Atfb A =

. 24 At < i
= 2 exp (=2ai AY) (smh b At) [(b At sinh 2b At) B 1} _

b At 2 sinh? b At
oo s (12 Sy ] "
Summarized:

— normal distribution:
E{y;} = yoexp (—ai Af)exp ((1/2)07i At]2) (29)
0, = E{y} [exp (o3 &) — 1] (30)

— uniform distribution:

E{p} = yo exp (—ai Af) (M>l )

V3o, At
/3 sinh 20, At /3! 12
o, = E{y; X g At ————— 1 -1 . 32
" i} [( 2 sinh? o, At \/3 @2

Examples for some typical values of o,; At are given in Fig. 4.

DISCUSSION

The main problem, formulated yet in the introduction was the question whether
the random parameter can cause a systematic deviation in dynamic behaviour of
a system in comparison with a model, commonly used, where all the random distur-
bances (with zero mean) are additively concentrated at the output. As the systematic
deviation we denote a shift of the mean value of the response, e.g. such type of error
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that cannot be removed by averaging. Without such systematic error the mean value
of the response should be

E{)'(t)} = y(t) = yoexp (—EI) . (33)

Simple comparison with equations (29), (31) proves the systematic deviations in
both cases. Actual significance of the theoretical conclusion particularly with respect
to the practical treatment can be estimated quantitatively.

The mean response of the stochastic system — for both the normal and uniform
distribution — has the character of decreasing exponential (Fig. 4) and can be
approximated as

¥ = ys exp(—a*t). (39

Deviation between the parameters of Eq. (34) and (33) characterizes then the diffe-
rence of both dynamics.

For the normal distributed aj, the values if yg, a* directly follow from the Eq. (29):

¥6 = Yo } )

a*=3a - ol Alf2.

In the case of uniform distribution (37) these values must be found using rms
fitting technique. Minimizing

:ZO(E{)H} — y¥)2 = min (36)

we obtain:
Yo = Yo
1 In sinh \/3 o, At

a*=a— —

At 3, At

(7)

Relative error of the parameter a* equals:

a) normal distribution

8, = (a* — a)ja = —(o? At]23) (38)
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DISTRIBUTION
NORMAL UNIFORM
a b
10 [ j
yit)
06| J
02 J
c ' d

Fic. 4

The Mean Values and the Standard Deviation Bands E{yj} + o, of the Impulse Responses
of the Non-Stationary System

a, b; At=02 o0,=02
¢, d: 44=02 g,=05
e, f: dr=1 g, = 05
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b) uniform distribution

L, Sinh o, At J3 ~

do= ——
' aae 0, At 3
az At ol Ar? (39)
- - + ...
2a 10

In both cases the relative error is negative (Fig. 5). It means that the dynamics of
the described stochastic system corresponds (in the mean sense) to an deterministic
systern with a time constant longer than the mean value t = 1/@. The increase is
proportional to the variance and almost does not depend on the type of the distri-
bution.

CONCLUSION

From the statistical analysis of the simple dynamic system with random parameter
given in preceding chapters, it may be inferred following conclusions: a) Dynamics
of the stochastic system with random parameter (time constant) substantionally
differs from the dynamics of a system with additive random noise (Fig. 1). b) Main
difference occurs in the mean value of the time response. It varies according to the
variance of the random parameter. ¢) Due to this effect the stochastic system behaves
(in the mean sense) rather like a system with a longer time constant than it would
correspond to the mean value of the random parameter (r = 1/a). d) Conclusions
mentioned above are'significant only in the case that the standard deviation of random
parameter has considerably large value (comparable with the mean value). But even
in this case the actual shift of the mean value is much less than the standard deviation
of the response and therefore it can be observed only in precise and repsated measure-
ments. :

Fic. 5
Relative Deviation of the Parameter a (Eq.
349
— Normal distribution; ———— uniform dis-
tribution; ———— value o, = a/\/3 ie.
700 b= a(24).

G /6,%
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At the end we may conclude that the apparently different statements of the authors
mentioned above are in fact not contradictious with the given solution. They may be
fully explained and unified on its base.
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