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Contradictious results published by different authors about the dynamics of systems with random 
parameters have been examined. Statistical analysis of the simple 1st order system proves that the 
random parameter can cause a systematic difference in the dynamic behaviour that cannot be 
(in general) described by the usual constant-parameter model with the additive noise at the output. 

The majority of existing methods for a modelling of chemical objects and proces­
ses i -3 is mostly based on the following scheme: a) statement of a general mathema­
tical model; b) experimental identification of its coefficients; c) verification of the mo­
del on the reality. 

As a first step, the physico-chemical analysis is commonly used for the determi­
nation of the general . mathematical description of the system (deterministic model). 
The aim of the second and the third step is an evaluation (identification) of unknown 
parameters and verification of the whole model in real or simulated conditions. Quali­
ty of the model can be judged either using some explicitely defined criterion or at least 
SUbjectively (visual coincidence of the response etc.). 

The just outlined scheme, more or less common for all natural sciences, has some 
specific features in chemical applications. At first, the exact analytical formulation 
of the mathematical model is often considerably complicated and laborous (distri­
buted parameters, nonlinearities etc.) and the simplification of it is not always straight­
forward. Even the experimental verification of the finded model is not without 
problems either. High level of noise, different quality, accuracy and reliability of 
experimental equipment effect directly the achievable precision of results. 

Extremely high level of random disturbances calls for statistical processing either 
in data processing or in the statement of the stochastic mathematical model that could 
be more suitable for the description of the real system than the deterministic one. 

Modern theory of automatic control often deals with the term stochastic system 
which can be described mostly as a block scheme in Fig. 1. Object S is described as 
a model with constant or slowly changing coefficients. The input x(t) may by either 
random or deterministic one. On the output we can observe only a mixture of an 
ideal output and an additive random disturbance. It does not matter whether the 
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object is relatively simple or complex one (several inputs and outputs, feedbacks etc.); 
the main idea of this approach consists in the constant-coefficient model and in the 
concentration of all disturbances in one point of the signal way. For linear systems 
it is not important whether this point lies at the output, input or at some other place 
of the signal way, because the influence can be simply transformed anywhere else. 

The described approach has been largely analysed and frequently used in many 
applications. Despite of its simplicity it describes quite satisfactorily numerous 
technical and scientific problems. One of its main advantage consists in the possibility 
of diminishing the disturbing influence of the random component by averaging 
(e.g. repetitive measurements, correlation technique etc .). 

Although this fact facilitates and even enables the solution of many problems, 
it cannot be used in every case. As an example it may be mentioned a two-phase 
continuous stirred tank reactor with randomly fluctuating instantaneous level (VOlu­
me) of an inner liquid. If the random component is significant with respect to tht 
mean value of the volume, the mathematical description yields to the model with 
variable coefficients (time constants) for which the model mentioned above (Fig. 1.) 
is substantionally non-adequate. 

Systems with randomly varying parameters and their dynamic properties have 
been examined by several authors either in the theoretical or experimental field. 
Interesting results have been published by King1

•
z, who theoretically showed , that 

even a 1st order system with variable time constant can occur substantionally different 
dynamic properties than a corresponding constant-parameter system. In the men­
tioned example the random parameter causes an increasing of an effective (mean) 
time constant of the system. On the other hand some other authors like Berrymann 
and Himmelblau 3 in a simulated experimental analysis proved that no significant 
differences occurred between the dynamics of the constant and random parameter 
systems (in the mean sense). 

With respect to this discrepancy and having in mind that the King's conclusions 
particularly could caIl for the principal revision of the widely used identification 
methods, experimental verification of theoretical results etc., there is analysed a simple 
example for judging the significance of mentioned contradictious results. 

FIG.l 

Stochastic Model of the System with Con­
stant Parameters 
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THEORETICAL 

STATEMENT OF THE PROBLEM 

Let us have the simplest dynamic 1st order system described by an ordinary diffe­
rential equation with time-variable coefficients: 

y' + ay = bx. (1) 

Dynamic member of this type - either with constant or variable coefficients -
represents a basic element for the description of the dynamics of almost any chemical 
equipment. Accordingly, the deviation detected in this case will necessarily influence 
the dynamics of all other more complicated equipments. 

Equation (1) with time-constant coefficients has the solution (weighting function -
response to an input Dirac impulse) in the form (Fig. 2): 

yet) = bexp(-at). (2) 

Consider now that the coefficients in (1) randomly vary in time. Such equation 
describes e.g. the dynamics of a continuous reactor with fluctuating volume flow rate 
of the reacting mixture. Let us take following assumptions: 

a) The system response is a continuous function of time for any t =1= 0. 
b) The changes of parameters can occur only at discrete time instants (3) 

(ti : i = 0, 1,2 ... ; to = 0). 
c) During the interval ti ~ t < ti + 1 the parameters remain unchanged. 

The first assumption is for real (inertial) systems fulfilled automatically. The others 
can be approximated with a sufficient accuracy by a suitable choice of instants t i • 

The first-order stochastic system described by Eq. (1) will be analysed for the case 

---- -----l 

lo~ 
~~--' 

FIG. 2 

Impulse Response of the System (1) with 
Constant Coefficients (yo = 1) 
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that the parameter a (inverse value of the time "constant" of the system) is randomly 
changed. In order to fulflll mentioned assumptions the values b mllst then be changed 
too - depending on a. Independent changes of both parameters (e.g. one of them 
kept constant) as it is sometimes assumed, entail a discontinuous system response 
contradicting the physically motivated assumption (3a). 

The impulse response of such stochastic system is given as a sum of elementary 
responses Yi(t) that form a solution of Eq. (1) within one time interval, where the vector 
of parameters does not change: 

y;(t) = yet) 

Y;(t) = 0 

co 

for ti ~ t < ti+ 1 } 

for other t 

yet) = L Yi(t) . 
i ~ O 

The elementary impulse response is then given (Fig. 3): 

where 

y;(t) = Yi exp [ - ai(t - ti)J 

Yi(t) = 0 

for ti ~ t < t i + 1 } 

for other t, 

Due to assumption of continuity: 

lim Yi(t) = Yi+l(l i+1) = Yi+l . 
t-+tl+1 

Without loss of generality we may put 10 = 0: 

Yo(t 1) = Yl = Yo exp [ -a l t 1J 

Yl(t 2 ) = Y2 = Yl exp [ -a2(t 2 - t1)J 
yi(3) = Y3 = Y2 exp [ - a3(t3 - t2)J 

After sequential substitution we obtain: 

i 

Yi = Yo exp {-L altj - t j - l )}· 
j~1 
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For a special case of equidistant time instants 

t; - t;-1 = ilt = const (11) 
I 

Yi = Yo exp {-Llt L aJ} . (12) 
J= 1 

Final impulse response is then given by the substitution of Eq. (12) or (10) in Eq. (5) 
(Fig. 3). 

STATISTICAL CHARACTERISTICS OF THE RESPONSE 

As it has been assumed, the values a j depend on the external influences. They can be 
described as random variables with some statistical properties, and the whole response 
as a random process. Its value in every time instant is a random variable. 

Let us assume that values aJ are mutually independent random variables, stationary 
in the wide sense with the mean ii, standart deviation (Ja and probability density p(a j ). 

The mean value of the response in the time instant t; is given: 

yet) 

I f+oo = Yo IJ exp (-aJ ilt) p(aj) daj . 
J-l -00 

(13) 

FlO. 3 

Impulse Response of the Non-Stationary 
System 
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Similarly the variance: 

D{Yi} = E{[Yi - E{Yi}]2} = E{yD - E2{Yi} = 

= E{y~ exp (-2M t aj)} - E2{Yi} = 
j= 1 

333 

(14) 

The further procedure depends on the type of probability distribution of the random 
vector aj. As an example, two typical distribution laws will be analysed and compared 
(other types of distributions can be used similarly): 

Normal Distribution 

The probability density of the parameter a j has the form 

(15) 

where a and aa are the mean and standard deviation of the parameter a j • Due to the 
assumption of stationarity, both of them are constant in time. 

The mean value of the response (13) is then given: 

= Yo n --- exp -aj M - _J-
2
- daj. i 1 f + 00 [ (a. - a)2] 

j=l aa.j(2rc) -00 2aa 
(16) 

The exponent in the integrand can be written as: 

-a. fit - (a j - a)2 = _ ~ [a~ _ 2(a _ a2 fit) a. + a2] = 
J . 2a; 2a; J a J 

1 2 2 a; fit 2 

- - (a . - a + a fit) - a fit + -- (17) 
2a; J a 2 

E{ } _ ni exp( -a M + (1/2)a; fit/2)f+
oo 

[_( _ - + 2 At)2/2 2] d . Yi - Yo exp aj a aa Ll. aa aJ • 

j=l aa .j(2rc) -00 

(18) 

Collection Czechoslov. Chern. Commun. [Vol. 44] [1979] 



334 Herles: 

Since 

f
+ OO 

(1/0". J(21t)) - 00 exp [-z2/(20";)J dz = 1 (19) 

I 

E{Yi} = Yo n exp [ -Zi L1t + (1/2)(J; L1t/2J = Yo exp [ -(a- 1/2(J; Llt) i L11/2J . 
j=1 (20) 

Similarly the variance (14): 

(21) 

The integrand in (21) is nearly the same as in (13) - except the constant in the expo­
nent. Substituting 2L1t instead of Llt and using Eq. (20) we obtain: 

I 

D{Yi} = y~ n {exp [ -2Zi L1t + 2(J; L1t2J} - y~ exp [ -2ai L1t + O";i L1t2J = 
j=1 

= y~ exp [ -2Zii L1t + O";i L1t2J . (exp [ +(J;i L1t2J - 1) = 

= E2{Yd (exp [ +O";i L1t2J - 1) (22) 

O"YI = E{Yi} [exp (O";i L1(2) - 1J1 /2 • (23) 

Uniform Distribution 

The probability density p(aj) in this case has the form: 

p(aj) = 1/(2b) 

p(aj) = 0 

for Zi - b < a· < Zi + b J = 

for other aj } (24) 

The parameter b denotes the width of the interval (Zi ± b) within which the values aj 
can occur. Standard deviation of aj is equal: 

(25) 

Substituting (24) into Eq. (13) and (14) we obtain: 

E{Yi} = YOil f:: exp(-aj L1t)p(aj)daj = 

i 1 fii+b 
= Yo n - exp (-aj M) daj = Yo exp (-Zii L1t). (sinh b L1t/b L1t)l (26) 

j=l 2b ii-b 
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. (sinh 2b t1t/2b t1t)l - y~ exp -2iii t1t) . (sinh b t1t/b t1t)2i = 

_ 2 (T' t1) (Sinh b t1t)2i [(b ilt sinh 2b t1t)1 ] _ 
- yoexp - QI t bM -2- sinh2 bt1t - 1 -

(J = E{ .} [(bt1t sinh2bM)i _ 1J1/2 
y, y, 2 sinh2 b t1t 

Summarized: 

- normal distribution: 

- uniform distribution: 

E{Yi} = Yo exp (-QI t1t) • _. (Sinh )3 (J t1t)1 
)3 (J. t1t 

(J = E{ .} [()3 (J t1t sinh 2(J. t1t )3)1 _ 1 J1 /2 
y, y, 2' sinh2 (J. t1t )3 

Examples for some typical values of (Ja; t1t are given in Fig. 4. 

DISCUSSION 

335 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

The main problem, formulated yet in the introduction was the question whether 
the random parameter can cause a systematic deviation in dynamic behaviour of 
a system in comparison with a model, commonly used, where all the random distur­
bances (with zero mean) are additively concentrated at the output. As the systematic 
deviation we denote a shift of the mean value of the response, e.g. such type of error 
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that cannot be removed by averaging. Without such systematic error the mean value 
of the response should be 

E{y(t)} = y.(t) = Yo exp (-at). (33) 

Simple comparison with equations (29), (31) proves the systematic deviations in 
both cases. Actual significance of the theoretical conclusion particularly with respect 
to the practical treatment can be estimated quantitatively. 

The mean response of the stochastic system - for both the normal and uniform 
distribution - has the character of decreasing exponential (Fig. 4) and can be 
approximated as 

(34) 

Deviation between the parameters of Eq. (34) and (33) characterizes then the diffe­
rence of both dynamics. 

For the normal distributed ai' the values if yri, a* directly follow from the Eq. (29): 

y~ = Yo 

a* = a - a; tt.t/2 . } (35) 

In the case of uniform distribution (31) these values must be found using rms 
fitting technique. Minimizing 

co 

L (E{Yi} - yi)2 ~ min (36) 
1=0 

we obtain: 

(37) 

Relative error of the parameter a* equals: 

a) normal distribution 

ba = (a* - a)/a = -(a; dt/2a) (38) 
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DISTRIBUTION 

NORMAL UNIFORM 

1-0 

1 0 

1-0 

01 at 

FlO, 4 

The Mean Values and the Standard Deviation Bands E{YJ} ± u) of the Impul&e Responses 
of the Non-Stationary System 

a, b: .Jt= 0,2 ua = 0'2 

c, d: .Jt = 0·2 ua = 0'5 

e, f: .Jt = 1 ua = 0,5 
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b) uniform distribution 

15. = __ 1_ In sinh 0". Ilt .J3 :::::: 
a Ilt 0". Ilt .J3 

:::::: _ O";~ (1 _ 0";1 ~t2 + .... ) . } (39) 

In both cases the relative error is negative (Fig. 5). It means that the dynamics of 
the described stochastic system corresponds (in the mean sense) to an deterministic 
system with a time constant longer than the mean value r = l/a. The increase is 
proportional to the variance and almost does not depend on the type of the distri­
bution. 

CONCLUSION 

From the statistical analysis of the simple dynamic system with random parameter 
given in preceding chapters, it may be inferred following conclusions: a) Dynamics 
of the stochastic system with random parameter (time constant) substantionally 
differs from the dynamics of a system with additive random noise (Fig. 1). b) Main 
difference occurs in the mean value of the time response. It varies according to the 
variance of the random parameter. c) Due to this effect the stochastic system behaves 
(in the mean sense) rather like a system with a longer time constant than it would 
correspond to the mean value of the random parameter (r = l/a). d) Conclusions 
mentioned above are significant only in the case that the standard deviation of random .­
parameter has considerably large value (comparable with the mean value). But even 
in this case the actual shift of the mean value is much less than the standard deviation 
of the response and therefore it can be ob3erved only in precise and repeated measure­
ments. 

FIG. 5 

Relative D :;!viation of the Parameter a (E~. 
(34) 
- Normal distribution; - --- uniform dis­
tribution; - .-.-.-. value (ja = a/.J3 i.e. 
b = ii(24). 
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At the end we may conclude that the apparently different statements of the authors 
mentioned above are in fact not contradictious with the given solution. They may be 
fulIy explained and unified on its base. 
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